If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25w+10w^2=0
a = 10; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·10·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*10}=\frac{-50}{20} =-2+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*10}=\frac{0}{20} =0 $
| 5(n+8)=60 | | 2t-4=20 | | 2x+6(5x-8)=30 | | 3y+18=20 | | 8(d+5)=64 | | 10(v+2)=100 | | 9(b+4)=81 | | 6b+4=5b-7 | | 39=g/7+35 | | m-98/2=1 | | 8(x+2)=16x | | -16/7=-8u | | 732=2x^2+10x+48 | | 7(h+2)=98 | | -4/7u=12 | | j+47/8=8 | | 8(m-82)=48 | | 5y/6=-35 | | 1x+4x=9x+1x | | s/8+41=38 | | 7x-85x=67 | | -7x+1=15x+22 | | 14=-7/2w | | -4(x+4)=-8x-24 | | 5/n=2 | | 96=2(m+27) | | -x=6+9 | | -3m=-48 | | f+19/5=5 | | 9d-12=-48 | | y=-3(10)+15 | | h/10+17=22 |